Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.256
1.
J Cell Mol Med ; 28(9): e18361, 2024 May.
Article En | MEDLINE | ID: mdl-38722283

Hypoxia and Ferroptosis are associated with the malignant behaviour of cervical cancer. Endothelial PAS domain-containing protein 1 (EPAS1) contributes to the progression of cervical cancer. EPAS1 plays important roles in hypoxia and ferroptosis. Using the GEO dataset, machine-learning algorithms were used to screen for hypoxia- and ferroptosis-related genes (HFRGs) in cervical cancer. EPAS1 was identified as the hub gene. qPCR and WB were used to investigate the expression of EPAS1 in normal and cervical cancer tissues. The proliferation, invasion and migration of EPAS1 cells in HeLa and SiHa cell lines were detected using CCK8, transwell and wound healing assays, respectively. Apoptosis was detected by flow cytometry. A dual-luciferase assay was used to analyse the MALAT1-miR-182-5P-EPAS1 mRNA axis and core promoter elements of the super-enhancer. EPAS1 was significantly overexpressed in cervical cancer tissues. EPAS1 could increase the proliferation, invasion, migration of HeLa and SiHa cells and reduce the apoptosis of HeLa and SiHa cell. According to the double-luciferase assay, EPAS1 expression was regulated by the MALAT1-Mir-182-5p-EPAS1 mRNA axis. EPAS1 is associated with super-enhancers. Double-luciferase assay showed that the core elements of the super-enhancer were E1 and E3. EPAS1, an HFRG, is significantly overexpressed in cervical cancer. EPAS1 promotes malignant behaviour of cervical cancer cells. EPAS1 expression is regulated by super-enhancers and the MALAT1-miR-182-5P- EPAS1 mRNA axis. EPAS1 may be a target for the diagnosis and treatment of cervical cancer.


Apoptosis , Basic Helix-Loop-Helix Transcription Factors , Cell Movement , Cell Proliferation , Ferroptosis , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms , Humans , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Female , Ferroptosis/genetics , Cell Proliferation/genetics , Cell Movement/genetics , Apoptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , HeLa Cells , RNA, Long Noncoding/genetics , RNA, Competitive Endogenous
2.
Medicine (Baltimore) ; 103(19): e38134, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728466

Abdominal aortic aneurysm (AAA) is a dangerous cardiovascular disease, which often brings great psychological burden and economic pressure to patients. If AAA rupture occurs, it is a serious threat to patients' lives. Therefore, it is of clinical value to actively explore the pathogenesis of ruptured AAA and prevent its occurrence. Ferroptosis is a new type of cell death dependent on lipid peroxidation, which plays an important role in many cardiovascular diseases. In this study, we used online data and analysis of ferroptosis-related genes to uncover the formation of ruptured AAA and potential therapeutic targets. We obtained ferroptosis-related differentially expressed genes (Fe-DEGs) from GSE98278 dataset and 259 known ferroptosis-related genes from FerrDb website. Enrichment analysis of differentially expressed genes (DEGs) was performed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG). Receiver Operating characteristic (ROC) curve was employed to evaluate the diagnostic abilities of Fe-DEGs. Transcription factors and miRNAs of Fe-DEGs were identified through PASTAA and miRDB, miRWalk, TargetScan respectively. Single-sample gene set enrichment analysis (ssGSEA) was used to observe immune infiltration between the stable group and the rupture group. DGIdb database was performed to find potential targeted drugs of DEGs. GO and KEGG enrichment analysis found that DEGs mainly enriched in "cellular divalent inorganic cation homeostasis," "cellular zinc ion homeostasis," "divalent inorganic cation homeostasis," "Mineral absorption," "Cytokine - cytokine receptor interaction," "Coronavirus disease - COVID-19." Two up-regulated Fe-DEGs MT1G and DDIT4 were found to further analysis. Both single and combined applications of MT1G and DDIT4 showed good diagnostic efficacy (AUC = 0.8254, 0.8548, 0.8577, respectively). Transcription factors STAT1 and PU1 of MT1G and ARNT and MAX of DDIT4 were identified. Meanwhile, has_miR-548p-MT1G pairs, has_miR-53-3p/has_miR-181b-5p/ has_miR-664a-3p-DDIT4 pairs were found. B cells, NK cells, Th2 cells were high expression in the rupture group compared with the stable group, while DCs, Th1 cells were low expression in the rupture group. Targeted drugs against immunity, GEMCITABINE and INDOMETHACIN were discovered. We preliminarily explored the clinical significance of Fe-DEGs MT1G and DDIT4 in the diagnosis of ruptured AAA, and proposed possible upstream regulatory transcription factors and miRNAs. In addition, we also analyzed the immune infiltration of stable and rupture groups, and found possible targeted drugs for immunotherapy.


Aortic Aneurysm, Abdominal , Aortic Rupture , Ferroptosis , Ferroptosis/genetics , Humans , Aortic Aneurysm, Abdominal/genetics , Aortic Aneurysm, Abdominal/diagnosis , Aortic Rupture/genetics , MicroRNAs/genetics , Gene Expression Profiling/methods , Gene Ontology , ROC Curve
3.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Article En, Zh | MEDLINE | ID: mdl-38725342

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Cell Movement , Cell Proliferation , Stomach Neoplasms , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Humans , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ferroptosis/genetics , 3' Untranslated Regions
4.
Brief Bioinform ; 25(3)2024 Mar 27.
Article En | MEDLINE | ID: mdl-38742521

Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.


Ferroptosis , Ferroptosis/genetics , Humans , Disease Progression , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Iron/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
5.
Cell Mol Biol Lett ; 29(1): 65, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714951

The engineered clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) system is currently widely applied in genetic editing and transcriptional regulation. The catalytically inactivated CasRx (dCasRx) has the ability to selectively focus on the mRNA coding region without disrupting transcription and translation, opening up new avenues for research on RNA modification and protein translation control. This research utilized dCasRx to create a translation-enhancement system for mammals called dCasRx-eIF4GI, which combined eukaryotic translation initiation factor 4G (eIF4GI) to boost translation levels of the target gene by recruiting ribosomes, without affecting mRNA levels, ultimately increasing translation levels of different endogenous proteins. Due to the small size of dCasRx, the dCasRx-eIF4GI translation enhancement system was integrated into a single viral vector, thus optimizing the delivery and transfection efficiency in subsequent applications. Previous studies reported that ferroptosis, mediated by calcium oxalate (CaOx) crystals, significantly promotes stone formation. In order to further validate its developmental potential, it was applied to a kidney stone model in vitro and in vivo. The manipulation of the ferroptosis regulatory gene FTH1 through single-guide RNA (sgRNA) resulted in a notable increase in FTH1 protein levels without affecting its mRNA levels. This ultimately prevented intracellular ferroptosis and protected against cell damage and renal impairment caused by CaOx crystals. Taken together, this study preliminarily validated the effectiveness and application prospects of the dCasRx-eIF4GI translation enhancement system in mammalian cell-based disease models, providing novel insights and a universal tool platform for protein translation research and future therapeutic approaches for nephrolithiasis.


CRISPR-Cas Systems , Calcium Oxalate , Kidney , Animals , Humans , Male , Mice , Calcium Oxalate/metabolism , CRISPR-Cas Systems/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4G/genetics , Ferritins , Ferroptosis/genetics , Gene Editing/methods , HEK293 Cells , Kidney/metabolism , Kidney/pathology , Kidney Calculi/genetics , Kidney Calculi/metabolism , Oxidoreductases/metabolism , Oxidoreductases/genetics , Protein Biosynthesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , RNA, Guide, CRISPR-Cas Systems/metabolism
6.
Clin Transl Med ; 14(5): e1678, 2024 May.
Article En | MEDLINE | ID: mdl-38736108

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Cyclin-Dependent Kinases , Ferroptosis , Prostatic Neoplasms, Castration-Resistant , Male , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Ferroptosis/genetics , Humans , Mice , Animals , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/genetics , Disease Progression , Cell Line, Tumor
7.
Cancer Biol Ther ; 25(1): 2349429, 2024 Dec 31.
Article En | MEDLINE | ID: mdl-38738555

Cervical cancer (CC) is a prevalent malignancy among women worldwide. This study was designed to investigate the role of METTL14 in sorafenib-induced ferroptosis in CC. METTL14 expression and m6A methylation were determined in CC tissues, followed by analyzes correlating these factors with clinical features. Subsequently, METTL14 was knocked down in CC cell lines, and the effects on cell proliferation, mitochondrial morphology and ferroptosis were assessed using CCK-8, microscopy, and markers associated with ferroptosis, respectively. The regulatory relationship between METTL14 and FTH1 was verified using qRT-PCR and luciferase reporter assays. The functional significance of this interaction was further investigated both in vitro and in vivo by co-transfecting cells with overexpression vectors or shRNAs targeting METTL14 and FTH1 after sorafenib treatment. METTL14 expression and m6A methylation were significantly reduced in CC tissues, and lower METTL14 expression levels were associated with a poorer CC patients' prognosis. Notably, METTL14 expression increased during sorafenib-induced ferroptosis, and METTL14 knockdown attenuated the ferroptotic response induced by sorafenib in CC cells. FTH1 was identified as a direct target of METTL14, with METTL14 overexpression leading to increased m6A methylation of FTH1 mRNA, resulting in reduced stability and expression of FTH1 in CC. Furthermore, FTH1 overexpression or treatment with LY294002 partially counteracted the promotion of sorafenib-induced ferroptosis by METTL14. In vivo xenograft experiments demonstrated that inhibiting METTL14 reduced the anticancer effects of sorafenib, whereas suppression of FTH1 significantly enhanced sorafenib-induced ferroptosis and increased its anticancer efficacy. METTL14 reduces FTH1 mRNA stability through m6A methylation, thereby enhancing sorafenib-induced ferroptosis, which contributes to suppressing CC progression via the PI3K/Akt signaling pathway.


Ferroptosis , Methyltransferases , RNA Stability , Sorafenib , Uterine Cervical Neoplasms , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Female , Ferroptosis/drug effects , Ferroptosis/genetics , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Mice , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , RNA Stability/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Methylation/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , RNA, Messenger/genetics , RNA, Messenger/metabolism , Prognosis , Ferritins , Oxidoreductases
8.
Sci Rep ; 14(1): 10019, 2024 05 01.
Article En | MEDLINE | ID: mdl-38693171

Nasopharyngeal carcinoma (NPC) is a tumor that occurs in the nasopharynx. Although advances in detection and treatment have improved the prognosis of NPC the treatment of advanced NPC remains challenging. Here, we explored the effect of microRNA (miR)-122-5p on erastin-induced ferroptosis in NPC cells and the role of ferroptosis in the development of NPC. The effect of miR-122-5p silencing and overexpression and the effect of citrate synthase on erastin-induced lipid peroxidation in NPC cells was analyzed by measuring the amounts of malondialdehyde, Fe2+, glutathione, and reactive oxygen species and the morphological alterations of mitochondria. The malignant biological behavior of NPC cells was examined by cell counting kit-8, EDU, colony formation, Transwell, and wound healing assays. The effects of miR-122-5p on cell proliferation and migration associated with ferroptosis were examined in vivo in a mouse model of NPC generated by subcutaneous injection of NPC cells. We found that erastin induced ferroptosis in NPC cells. miR-122-5p overexpression inhibited CS, thereby promoting erastin-induced ferroptosis in NPC cells and decreasing NPC cell proliferation, migration, and invasion.


Cell Movement , Cell Proliferation , Ferroptosis , MicroRNAs , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Piperazines , Ferroptosis/drug effects , Ferroptosis/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/pathology , Humans , Animals , Cell Line, Tumor , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/genetics , Mice , Cell Proliferation/drug effects , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Reactive Oxygen Species/metabolism , Mice, Nude
9.
J Cancer Res Clin Oncol ; 150(5): 228, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700533

BACKGROUND: Lung cancer is a serious threat to human health and is the first leading cause of cancer death. Ferroptosis, a newly discovered form of programmed cell death associated with redox homeostasis, is of particular interest in the lung cancer, given the high oxygen environment of lung cancer. NADPH has reducing properties and therefore holds the potential to resist ferroptosis. Resistance to ferroptosis exists in lung cancer, but the role of NADK in regulating ferroptosis in lung cancer has not been reported yet. METHODS: Immunohistochemistry (IHC) was used to analyse the expression of NADK in 86 cases of lung adenocarcinoma(LUAD) and adjacent tissues, and a IHC score was assigned to each sample. Chi-square and kaplan-meier curve was performed to analyse the differences in metastasis and five-year survival between the two groups with NADK high or low scores. Proliferation of NADK-knockdown LUAD cell lines was detected in vivo and vitro. Furthermore, leves of ROS, MDA and Fe2+ were measured to validate the effect and mechanism of NADK on ferroptosis in LUAD. RESULTS: The expression of NADK was significantly evaluated in LUAD tissues as compared to adjacent non-cancerous tissues. The proliferation of NADK-knockdown cells was inhibited both in vivo and vitro, and increasing levels of intracellular ROS, Fe2+ and lipid peroxide products (MDA) were observed. Furthermore, NADK-knockdown promoted the ferroptosis of LUAD cells induced by Erastin/RSL3 by regulating the level of NADPH and the expression of FSP1. Knockdown of NADK enhanced the sensitivities of LUAD cells to Erastin/RSL3-induced ferroptosis by regulating NADPH level and FSP1 expression. CONCLUSIONS: NADK is over-expressed in LUAD patients. Knockdown of NADK inhibited the proliferation of LUAD cells both in vitro and in vivo and promotes the Erastin/RSL3-induced ferroptosis of LUAD cells by down-regulating the NADPH/FSP1 axis.


Adenocarcinoma of Lung , Ferroptosis , Lung Neoplasms , NADP , Ferroptosis/genetics , Ferroptosis/physiology , Humans , NADP/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Animals , Female , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Male , Gene Knockdown Techniques , Cell Line, Tumor , Cell Proliferation , Mice, Nude , Middle Aged
10.
Mol Cancer ; 23(1): 89, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702722

Ferroptosis is a type of regulated cell death characterized by iron accumulation and uncontrolled lipid peroxidation, leading to plasma membrane rupture and intracellular content release. Originally investigated as a targeted therapy for cancer cells carrying oncogenic RAS mutations, ferroptosis induction now exhibits potential to complement chemotherapy, immunotherapy, and radiotherapy in various cancer types. However, it can lead to side effects, including immune cell death, bone marrow impairment, liver and kidney damage, cachexia (severe weight loss and muscle wasting), and secondary tumorigenesis. In this review, we discuss the advantages and offer an overview of the diverse range of documented side effects. Furthermore, we examine the underlying mechanisms and explore potential strategies for side effect mitigation.


Ferroptosis , Neoplasms , Humans , Neoplasms/therapy , Neoplasms/etiology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Ferroptosis/genetics , Ferroptosis/drug effects , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
11.
Arthritis Res Ther ; 26(1): 100, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741149

BACKGROUND: Exploring the pathogenesis of osteoarthritis (OA) is important for its prevention, diagnosis, and treatment. Therefore, we aimed to construct novel signature genes (c-FRGs) combining cuproptosis-related genes (CRGs) with ferroptosis-related genes (FRGs) to explore the pathogenesis of OA and aid in its treatment. MATERIALS AND METHODS: Differentially expressed c-FRGs (c-FDEGs) were obtained using R software. Enrichment analysis was performed and a protein-protein interaction (PPI) network was constructed based on these c-FDEGs. Then, seven hub genes were screened. Three machine learning methods and verification experiments were used to identify four signature biomarkers from c-FDEGs, after which gene set enrichment analysis, gene set variation analysis, single-sample gene set enrichment analysis, immune function analysis, drug prediction, and ceRNA network analysis were performed based on these signature biomarkers. Subsequently, a disease model of OA was constructed using these biomarkers and validated on the GSE82107 dataset. Finally, we analyzed the distribution of the expression of these c-FDEGs in various cell populations. RESULTS: A total of 63 FRGs were found to be closely associated with 11 CRGs, and 40 c-FDEGs were identified. Bioenrichment analysis showed that they were mainly associated with inflammation, external cellular stimulation, and autophagy. CDKN1A, FZD7, GABARAPL2, and SLC39A14 were identified as OA signature biomarkers, and their corresponding miRNAs and lncRNAs were predicted. Finally, scRNA-seq data analysis showed that the differentially expressed c-FRGs had significantly different expression distributions across the cell populations. CONCLUSION: Four genes, namely CDKN1A, FZD7, GABARAPL2, and SLC39A14, are excellent biomarkers and prospective therapeutic targets for OA.


Computational Biology , Ferroptosis , Osteoarthritis , Osteoarthritis/genetics , Osteoarthritis/metabolism , Ferroptosis/genetics , Computational Biology/methods , Humans , Animals , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Biomarkers/metabolism , Biomarkers/analysis , Gene Regulatory Networks/genetics , Machine Learning
12.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article En | MEDLINE | ID: mdl-38634270

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
13.
Biosci Rep ; 44(5)2024 May 29.
Article En | MEDLINE | ID: mdl-38655715

Heart function is highly dependent on mitochondria, which not only produce energy but also regulate many cellular functions. Therefore, mitochondria are important therapeutic targets in heart failure. Abcb10 is a member of the ABC transporter superfamily located in the inner mitochondrial membrane and plays an important role in haemoglobin synthesis, biliverdin transport, antioxidant stress, and stabilization of the iron transporter mitoferrin-1. However, the mechanisms underlying the impairment of mitochondrial transporters in the heart remain poorly understood. Here, we generated mice with cardiomyocyte-specific loss of Abcb10. The Abcb10 knockouts exhibited progressive worsening of cardiac fibrosis, increased cardiovascular risk markers and mitochondrial structural abnormalities, suggesting that the pathology of heart failure is related to mitochondrial dysfunction. As the mitochondrial dysfunction was observed early but mildly, other factors were considered. We then observed increased Hif1α expression, decreased NAD synthase expression, and reduced NAD+ levels, leading to lysosomal dysfunction. Analysis of ABCB10 knockdown HeLa cells revealed accumulation of Fe2+ and lipid peroxides in lysosomes, leading to ferroptosis. Lipid peroxidation was suppressed by treatment with iron chelators, suggesting that lysosomal iron accumulation is involved in ferroptosis. We also observed that Abcb10 knockout cardiomyocytes exhibited increased ROS production, iron accumulation, and lysosomal hypertrophy. Our findings suggest that Abcb10 is required for the maintenance of cardiac function and reveal a novel pathophysiology of chronic heart failure related to lysosomal function and ferroptosis.


ATP-Binding Cassette Transporters , Ferroptosis , Lysosomes , Mice, Knockout , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Ferroptosis/genetics , Humans , Lysosomes/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Mitochondria, Heart/genetics , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/pathology , HeLa Cells , Iron/metabolism , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Male
14.
Free Radic Biol Med ; 219: 31-48, 2024 Jul.
Article En | MEDLINE | ID: mdl-38614226

Hepatocellular carcinoma (HCC) is the predominant form of liver cancer, characterized by high morbidity and mortality rates, as well as unfavorable treatment outcomes. Tripartite motif-containing protein 47 (TRIM47) has been implicated in various diseases including tumor progression with the activity of E3 ubiquitin ligase. However, the precise regulatory mechanisms underlying the involvement of TRIM47 in HCC remain largely unexplored. Here, we provide evidence that TRIM47 exhibits heightened expression in tumor tissues, and its expression is in intimate association with clinical staging and patient prognosis. TRIM47 promotes HCC proliferation, migration, and invasion as an oncogene by in vitro gain- and loss-of-function experiments. TRIM47 knockdown results in HCC ferroptosis induction, primarily through CDO1 involvement to regulate GSH synthesis. Subsequent experiments confirm the interaction between TRIM47 and CDO1 dependent on B30.2 domain, wherein TRIM47 facilitates K48-linked ubiquitination, leading to a decrease in CDO1 protein abundance in HCC. Furthermore, CDO1 is able to counteract the promotional effect of TRIM47 on HCC biological functions. Overall, our research provides novel insight into the mechanism of TRIM47 in CDO1-mediated ferroptosis in HCC cells, highlighting its value as a potential target candidate for HCC therapeutic approaches.


Carcinoma, Hepatocellular , Cell Proliferation , Ferroptosis , Liver Neoplasms , Proteasome Endopeptidase Complex , Humans , Liver Neoplasms/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Ferroptosis/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Gene Expression Regulation, Neoplastic , Ubiquitination , Disease Progression , Ubiquitin/metabolism , Cell Line, Tumor , Animals , Mice , Cell Movement/genetics , Prognosis , Tripartite Motif Proteins , Neoplasm Proteins , Nuclear Proteins
15.
Aging (Albany NY) ; 16(8): 7426-7436, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38663941

Head and neck tumors are malignant tumors that appear in the head and neck. Although much progress has been made in the treatment of head and neck tumors, many challenges remain. The prognosis of some advanced cases remains poor and survival and quality of life after treatment face certain limitations. Therefore, further research into the pathogenesis and treatment options for head and neck tumors is important in order to improve the prognosis and quality of life of patients. The Protein Arginine Methyltransferase (PRMT) family is a class of enzymes that are responsible for adding methyl groups to arginine residues in proteins. PRMT family members play important roles in regulating many cellular processes, such as transcriptional regulation, signaling, and cell cycle regulation. Recent studies have shown that the PRMT family also plays an important function in tumorigenesis and development. Here, we found that PRMT family members are significantly overexpressed in head and neck tumors and that PRMT5 may serve as an independent prognostic factor in head and neck tumors. We found that PRMT5-regulated differential genes were significantly enriched in tumor-associated signaling pathways such as IL-17 and p53. And we also found that the expression of PRMT5 in head and neck tumors was significantly correlated with immune cell infiltration, m6A as well as the expression of ferroptosis-related genes, and drug sensitivity. These results suggest that PRMT may play an important role in the development of head and neck tumors.


Ferroptosis , Head and Neck Neoplasms , Protein-Arginine N-Methyltransferases , Squamous Cell Carcinoma of Head and Neck , Humans , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ferroptosis/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Male , Female , Prognosis , Middle Aged , Signal Transduction
16.
Int Immunopharmacol ; 133: 112138, 2024 May 30.
Article En | MEDLINE | ID: mdl-38678670

BACKGROUND: Diabetic kidney disease (DKD) is a common microvascular complication and one of the main causes of death in diabetes. Ferroptosis, an iron-dependent mode of cell death characterized by lipid ROS accumulation, was found to be associated with a number of diseases and has great potential for kidney diseases. It has great value to identify potential ferroptosis-related genes and their biological mechanisms in DKD. METHODS: We obtained the GSE30122 dataset from Gene Expression Omnibus (GEO) database and ferroptosis-related genes from the Ferrdb database. After differential expression analysis, and three machine learning algorithms, the hub ferroptosis-related gene EZH2 was identified. In order to investigate the function of EZH2, Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA) and single cell analysis were conducted. The expression of EZH2 was validated in DKD patients, HK-2 cell models and DKD mouse models. EZH2 knockdown HK-2 cells and HK-2 cells treated with GSK126 were performed to verify whether EZH2 affected ferroptosis in DKD. CHIP assay was used to detect whether EZH2 regulated ferroptosis by suppressing SLC7A11. Molecular docking was performed to explore EZH2 and four traditional Chinese medicine (Sennoside A, Berberine, Umbelliferone, Platycodin D) related to ferroptosis in DKD treatment. RESULTS: According to the GSE30122 dataset in GEO and ferroptosis-related genes from the Ferrb database, we obtained the hub ferroptosis-related gene EZH2 in DKD via diversified machine learning methods. The increasing of EZH2 expression was shown in single cell analysis, DKD patients, DKD mouse models and high glucose induced DKD cell models. Further study showed that EZH2 knockdown and inhibition can alleviate HG-induced ferroptosis in vitro. CHIP assay showed EZH2-mediated epigenetic silencing regulated the expression of SLC7A11. Molecular docking results showed that EZH2 had strong binding stability with Sennoside A, Berberine, Umbelliferone, and Platycodin D. CONCLUSION: Overall, our data shouwed that histone H3K27 methyltransferase EZH2 could regulate the renal tubular epithelial cell ferroptosis by suppressing SLC7A11 in DKD, which may serve as a credible reliable indicator for diagnosing DKD and a potential target for treatment.


Amino Acid Transport System y+ , Diabetic Nephropathies , Enhancer of Zeste Homolog 2 Protein , Ferroptosis , Ferroptosis/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Diabetic Nephropathies/genetics , Animals , Humans , Mice , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Cell Line , Mice, Inbred C57BL , Male
17.
Cell Signal ; 119: 111165, 2024 Jul.
Article En | MEDLINE | ID: mdl-38583746

Emerging evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in renal ischemia reperfusion (RIR) injury. However, the specific mechanisms by which lncRNAs regulate ferroptosis in renal tubular epithelial cells remain largely unknown. The objective of this study was to investigate the biological function of lncRNA heme oxygenase 1 (lnc-HMOX1) in RIR and its potential molecular mechanism. Our findings demonstrated that the expression of HMOX1-related lnc-HMOX1 was reduced in renal tubular epithelial cells treated with hypoxia-reoxygenation (HR). Furthermore, the over-expression of lnc-HMOX1 mitigated ferroptotic injury in renal tubular epithelial cells in vivo and in vitro. Mechanistically, lnc-HMOX1, as a competitive endogenous RNA (ceRNA), promoted the expression of HMOX1 by sponging miR-3587. Furthermore, the inhibition of HMOX1 effectively impeded the aforementioned effects exerted by lnc-HMOX1. Ultimately, the inhibitory or mimic action of miR-3587 reversed the promoting or refraining influence of silenced or over-expressed lnc-HMOX1 on ferroptotic injury during HR. In summary, our findings contribute to a comprehensive comprehension of the mechanism underlying ferroptotic injury mediated by lnc-HMOX1 during RIR. Significantly, we identified a novel lnc-HMOX1-miR-3587-HMOX1 axis, which holds promise as a potential therapeutic target for RIR injury.


Ferroptosis , Heme Oxygenase-1 , MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/genetics , Ferroptosis/genetics , Mice , Male , Humans , Mice, Inbred C57BL , Kidney/pathology , Kidney/metabolism
18.
J Cancer Res Clin Oncol ; 150(4): 204, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642144

BACKGROUND: Emerging research has validated that circular RNAs (circRNAs) have indispensable regulatory functions in tumorigenesis, including colorectal cancer (CRC). Ferroptosis is a specific cell death form and implicates in the malignant progression of tumors. Here, this study aimed to investigate the biofunction of circ_0087851 in tumor progression and ferroptosis of CRC, as well as its underlying molecular mechanism. METHODS: The expression pattern of circ_0087851 in CRC was validated by qRT-PCR. The biological characteristics of circ_0087851 in CRC were assessed through CCK-8, colony formation and transwell assays in vitro. The ferroptosis was measured using ferroptosis-related reagents on iron, Fe2+, and lipid ROS detection. Bioinformatics, luciferase reporter, and RNA pulldown assays were employed to reveal the circ_0087851-mediated regulatory network. In addition, the effect of circ_0087851 on tumor growth in vivo was detected using a xenograft model. RESULTS: Circ_0087851 was notably diminished in CRC tissues and cells. Functionally, overexpression of circ_0087851 suppressed CRC cell growth, migration, invasion, and facilitated ferroptosis in vitro. Meanwhile, circ_0087851 upregulation impeded CRC growth in vivo. Mechanistically, circ_0087851 functioned as a molecular sponge for miR-593-3p, and BRCA1 associated protein 1 (BAP1) was identified as a downstream target of miR-593-3p. Besides, rescue experiments revealed that miR-593-3p overexpression or silencing of BAP1 reversed circ_0087851-mediated CRC progression. CONCLUSION: Circ_0087851 performed as a tumor suppressor and ferroptosis promoter by the miR-593-3p/BAP1 axis, providing novel biomarker and therapeutic target for the clinical management of CRC.


Colorectal Neoplasms , Ferroptosis , MicroRNAs , RNA, Circular , Humans , Carcinogenesis , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Ferroptosis/genetics , MicroRNAs/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , RNA, Circular/genetics
19.
Environ Toxicol ; 39(6): 3760-3771, 2024 Jun.
Article En | MEDLINE | ID: mdl-38558500

Liver fibrosis is an invertible pathophysiologic process featured by excessive accumulation of extracellular matrix (ECM) which injures liver cells and activates hepatic stellate cells (HSCs). Besides, inducing ferroptosis in activated HSCs can alleviate liver fibrosis. LncRNAs modulate ferroptosis in activated HSCs and ECM deposition in liver fibrosis. However, the role of lncRNA FRMD6-AS1 in liver fibrosis is not discovered. In this study, lncRNA FRMD6-AS1 was dramatically up-regulated in activated HSCs. Knockdown of FRMD6-AS1 markedly increased iron ion, ROS and MDA levels, decreased GSH level, SLC7A11 and GPX4 protein expressions in activated HSCs. In addition, HSCs activation markers α-SMA and COL1α1 expressions were up-regulated in activated HSCs; knockdown of FRMD6-AS1 markedly down-regulated α-SMA and COL1α1 expressions in HSCs. Besides, lncRNA FRMD6-AS1 could interact with miR-491-5p, and negatively modulate miR-491-5p expression. USP13 was a target of miR-491-5p, and could be negatively modulated by miR-491-5p. Moreover, FRMD6-AS1 knockdown increased iron ion and ROS levels, decreased SLC7A11 and GPX4 protein expressions, facilitated HSCs viability, and up-regulated α-SMA and COL1α1 expressions via miR-491-5p/USP13 pathway. Finally, FRMD6-AS1 knockdown restored liver tissue structure and abrogated fibrosis in livers in a CCL4 liver fibrosis mouse model. Hence, lncRNA FRMD6-AS1/miR-491-5p/USP13 pathway repressed ferroptosis, promoted ECM deposition and facilitated liver fibrosis in vitro and in vivo models.


Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Long Noncoding , Ferroptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Mice , Mice, Inbred C57BL , Male , Carbon Tetrachloride/toxicity , Humans , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism
20.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article En | MEDLINE | ID: mdl-38673957

Cuproptosis and ferroptosis represent copper- and iron-dependent forms of cell death, respectively, and both are known to play pivotal roles in head and neck squamous cell carcinoma (HNSCC). However, few studies have explored the prognostic signatures related to cuproptosis and ferroptosis in HNSCC. Our objective was to construct a prognostic model based on genes associated with cuproptosis and ferroptosis. We randomly assigned 502 HSNCC samples from The Cancer Genome Atlas (TCGA) into training and testing sets. Pearson correlation analysis was utilized to identify cuproptosis-associated ferroptosis genes in the training set. Cox proportional hazards (COX) regression and least absolute shrinkage operator (LASSO) were employed to construct the prognostic model. The performance of the prognostic model was internally validated using single-factor COX regression, multifactor COX regression, Kaplan-Meier analysis, principal component analysis (PCA), and receiver operating curve (ROC) analysis. Additionally, we obtained 97 samples from the Gene Expression Omnibus (GEO) database for external validation. The constructed model, based on 12 cuproptosis-associated ferroptosis genes, proved to be an independent predictor of HNSCC prognosis. Among these genes, the increased expression of aurora kinase A (AURKA) has been implicated in various cancers. To further investigate, we employed small interfering RNAs (siRNAs) to knock down AURKA expression and conducted functional experiments. The results demonstrated that AURKA knockdown significantly inhibited the proliferation and migration of HNSCC cells (Cal27 and CNE2). Therefore, AURKA may serve as a potential biomarker in HNSCC.


Aurora Kinase A , Biomarkers, Tumor , Ferroptosis , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Ferroptosis/genetics , Aurora Kinase A/metabolism , Aurora Kinase A/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Male , Female , Kaplan-Meier Estimate , Cell Proliferation/genetics
...